

Welcome to Read the Docs

This is an autogenerated index file.

Please create a /home/docs/checkouts/readthedocs.org/user_builds/idsfree/checkouts/latest/docs/index.rst or /home/docs/checkouts/readthedocs.org/user_builds/idsfree/checkouts/latest/docs/README.rst file with your own content.

If you want to use another markup, choose a different builder in your settings.

Index

permalink: /howitworks/
title: How idsFree works?title_icon: fa fa-cogs
body_color: blue
description: What’s under the hoods and how idsFree could does hacking tasks safe
intro: true

Forewords

idsFree was designed with to ideas in mind:

	Automatize some hacking-related task.

	Provide a safe & useful tool for building isolated environments for pentesters that need to perform hacking tasks.

	Be able to perform these hacking tasks in cloud provided securely and without affect other cloud clients.

The above tasks could be done without raise any alerts into could provider.

Building the environment

Independently of the purpose that you was run idsFree it will follow these common steps:

	IdsFree uses a SSH connection to a virtual machine in your cloud provider.

	Once connected, idsFree will create a private and cyphered network on this virtual machine using Docker Swarm.

	Then get your application (and their environment requisites), packaged as a Docker image, and attach it to the just created network.

	Then Attach to the network the hacking tools, as a docker containers.

Automatized hacking

Starting at point 4 of previous common steps, to perform automatized tasks, idsFree does:

	Launch selected attacks through the cyphered and isolated network

	Take the results of tools and export them in a usable format: JSON or JUnit format (very useful for integrating with Jenkins).

	Clean up the container and network from the virtual machine.

Build a lab for pentesters

Starting at point 4 of previous common steps, to perform automatized tasks, idsFree does:

	Attach a Kali Linux, as a Docker container.

	Open an SSH port from outside throught this container.

	Provide to the auditor the SSH connection parameters.

At this point, when idsFree finishes the process, the pentester (auditor) will be able to connect from their machine to the just created environment, pointing to the Kali Linux machine.

The next image illustrates the resulting environment visually:

[image: idsFree]

Sharing information

idsFree uses GlusterFS to create a cluster of data.

Useful links:

	Using GlusterFS with Docker swarm cluster [http://embaby.com/blog/using-glusterfs-docker-swarm-cluster/]

	How to Use Docker Machine to Create a Swarm Cluster [https://www.linux.com/learn/how-use-docker-machine-create-swarm-cluster]

	Adding an existing docker host to docker machine : a few tips [https://blog.dahanne.net/2015/10/07/adding-an-existing-docker-host-to-docker-machine-a-few-tips/]

	Swarm Machines or Having fun with Docker Machine and the new Docker Swarm orchestration [https://blog.hypriot.com/post/swarm-machines-or-having-fun-with-docker-machine-and-the-new-docker-swarm-orchestration/]

Application with service dependencies

docker compose info

permalink: /quickstart/
title: QuickStarttitle_icon: fa fa-clock-o
body_color: purple
description: 5 minutes start tutorial about idsFree and basic concepts
intro: true

What’s idsFree?

idsFree is a project that allows to create and run some hacking-related tasks in public cloud provides (AWS, GAE, Digital Ocean...).

The project was born to aims to permit test your own applications inside a public infrastructure, NOT for launch hacking attack to outside using cloud providers as attacks launchers.

A quick use case

Imagine that you have a just developer application.

My applications should

Install idsFree

{% highlight ruby %}

python3.5 -m pip install idsfree
{% endhighlight %}

Prepare remote environment

IdsFree checks if a remote system has all the necessary conditions to run. An examples of usage are:

Check remote system by passing the password in command line

{% highlight ruby %}

idsfree -v -H 192.168.111.129 -d -U root -P MY_PASSWORD prepare
[*] Starting preparation of remote host...
[*] Checking remote machine for minimum requisites
[*] Initialization Swarm at IP: 192.168.111.129
[*] Creating new encrypted network: DgJXoXmeYhASHjmSV
{% endhighlight %}

Check remote system and tell to idsFree ask for the password

{% highlight ruby %}

idsfree -v -H 192.168.111.129 -d -U root -A prepare
[*] Starting preparation of remote host...
[*] Checking remote machine for minimum requisites
[*] Initialization Swarm at IP: 192.168.111.129
[*] Creating new encrypted network: DgJXoXmeYhASHjmSV
{% endhighlight %}

Launch automatic attacks

idsFree could performs attack for net and web environments and can report in JSON and JUnit compatible format.

If you wan to launch attack and report in JUnit:

{% highlight ruby %}

idsfree -v -H 192.168.111.129 -d -U root -P MY_PASSWORD run_attacks -p 6379 -t net -s redis redis -o results.xml -e junit
[*] Starting attacks of remote host...
[*] Checking remote machine for minimum requisites
[*] Creating temporal encrypted network: lEvXBfPNVmoCZyFmKJsnPSADJjrUoxmxjFst
[*] Removing temporal encrypted network: lEvXBfPNVmoCZyFmKJsnPSADJjrUoxmxjFst
[*] Generating results as ‘JUnit’ format, in file: ‘results.xml’
{% endhighlight %}

If you wan to launch attack and report in JSON and ask for the remote password:

{% highlight ruby %}

idsfree -v -H 192.168.111.129 -d -U root -A run_attacks -p 6379 -t net -s redis redis -o results.json -e json
[*] Starting attacks of remote host...
[*] Checking remote machine for minimum requisites
[*] Creating temporal encrypted network: lEvXBfPNVmoCZyFmKJsnPSADJjrUoxmxjFst
[*] Removing temporal encrypted network: lEvXBfPNVmoCZyFmKJsnPSADJjrUoxmxjFst
[*] Generating results as ‘json’ format, in file: ‘results.json’
{% endhighlight %}

For more information about the options and configurations for automatic attacks, check

permalink: /secure-hacking/
title: Isolated Hacking Platform
title_icon: fa fa-group
body_color: None
description: Building a safe, secure and Isolated Laboratory to perform manual hacking tasks in the cloud

Overview

What’s a isolated environment?

When you do hacking tasks, is very common to run these tasks in a controlled environment.

This is special important to test just developed applications and you need to test it before it will be released.

In this cases it necessary to create a most similar scenario of the real system and then the auditor starts to run the hacking tasks.

In hacking-slang is most usual to name the environment as laboratory

How idsFree can help you

simplifying the deploy and teardown the environments to test applications.

idsFree will open a remote shell into the just created isolated environments.

permalink: /automatic-hacking/
title: Automatic hacking
title_icon: fa fa-caret-square-o-right
body_color: None
description: Launch automatized hacking tasks in the cloud for your Continuous integration cycles

Launch automatic attacks

Also, idsFree can report in two formats: JSON and JUnit.

Launch attack and report in JUnit

{% highlight ruby %}

idsfree -v -H 192.168.111.129 -d -U root -P MY_PASSWORD run_attacks -p 6379 -t net -s redis redis -o results.xml -e junit
[*] Starting attacks of remote host...
[*] Checking remote machine for minimum requisites
[*] Creating temporal encrypted network: lEvXBfPNVmoCZyFmKJsnPSADJjrUoxmxjFst
[*] Removing temporal encrypted network: lEvXBfPNVmoCZyFmKJsnPSADJjrUoxmxjFst
[*] Generating results as ‘JUnit’ format, in file: ‘results.xml’
{% endhighlight %}

Launch attack, report in JSON and ask for password

{% highlight ruby %}

idsfree -v -H 192.168.111.129 -d -U root -A run_attacks -p 6379 -t net -s redis redis -o results.json -e json
[*] Starting attacks of remote host...
[*] Checking remote machine for minimum requisites
[*] Creating temporal encrypted network: lEvXBfPNVmoCZyFmKJsnPSADJjrUoxmxjFst
[*] Removing temporal encrypted network: lEvXBfPNVmoCZyFmKJsnPSADJjrUoxmxjFst
[*] Generating results as ‘json’ format, in file: ‘results.json’
{% endhighlight %}

Attack types

Currently, idsFree can launch two type of attacks:

	net: Network oriented attacks.

	web: Web oriented attacks.

idsFree will choice the best tools to perform each type of attack.

Results format

Currently idsFree could report the results in two formats:

	JUnit compatible file.

	JSON format.

permalink: /faq/
title: F.A.Qtitle_icon: icon_lifesaver
body_color: None
description: Frequent Asked Questions

General

 Is idsFree suitable for Malware analysis?
NO. idsFree runs under Docker umbrella and not uses visualization neither bare-metal approach. So, it makes not sense to use it for malware analysis.

 My applications need to packaged as any specific way?
Yes. idsFree only understands about docker images. You need to package your application into a Docker image and tell to idsFree what’s ports are you exposing in your applications (or what’s port do you want to test).

Then, you need to upload your Docker image to an accessible Docker Registry. idsFree will download this image.

 My application depends of other services, how can I tell to idsFree that?
We know that is very strange that an application hasn’t any dependency (a database, for example). For that, you could specify a Docker Swarm compose with all of your application dependencies.

For more information, see How it works section.

AWS Problems

 My cluster machines can't reach each others
AWS has the concept of VPC. Each VPC defines the allowed port to be opened. By default, the needed port por idsFree (it’s really that Swarm uses) need to be opened in the firewall.

The port you should open are:

TCP

	2377

	7946

UDP

	7946

	4789

You also need to allow ip protocol 50.

More information at Swam documentation page [https://docs.docker.com/engine/swarm/swarm-tutorial/#open-protocols-and-ports-between-the-hosts].

Linux errors

 Why Linux raises 'sudo' command not found?
idsFree uses sudo command to launch remote commands. Be sure that sudo command is installed in remote system and your user has permissions to execute docker command using sudo.

 When idsFree launches can't find attacked app
idsFree uses very new Docker features that need very new Linux kernel. Be sure you have had updated your system to have newest userlan tools and kernel.

Usually it should be enough to run sudo apt dist-upgrade command.

permalink: /install-config/
title: Installation & configuration
title_icon: fa fa-book
body_color: green
description: How to install and configure idsFree and the required environment and machines
intro: true

Install idsFree package

Install idsFree is very simple, depending of the release you want, you can install:

	stable version (recomended).

	development version.

Stable version

{% highlight ruby %}

python3.5 -m pip install idsfree
{% endhighlight %}

Development version

{% highlight ruby %}

python3.5 -m pip install idsfree
{% endhighlight %}

Provisioning new Machines for idsFree

Running complex architectures

Many times your applications must have many dependecies

Configuration

File based configuration

idsFree could be configured using global file config.

This file should be placed in one of three places:

	Your home.

	Current directory.

The file should have the name .idsfreerc and should have this structure:

{% highlight ruby %}
[DEFAULT]
timeout = 10
remote_host = 127.0.0.1
remote_port = 22
remote_user = ubuntu
remote_password = MYPASSWORD
cert_path = ~/.ssh/my_custom_pem.pem
{% endhighlight %}

The working mode is very simple: their parameter missing when idsFree will be called will be taken from config file.

Remote access using certificate

Using certificates is useful than password access to the remote systems. idsFree allow to use PEM certificates. To do that should use the certificate option:

	In command line, using –cert-path option.

	In config file, using cert_path value.

{% highlight ruby %}

idsfree –cert-path /home/me/.ssh/my_cert.pem -d -v run_attacks -redis -o results.xml
{% endhighlight %}

Or, if you are using config file:

{% highlight ruby %}
[DEFAULT]
cert_path = /home/me/.ssh/my_cert.pem
{% endhighlight %}

And then run:

{% highlight ruby %}

idsfree -d -v run_attacks -redis -o results.xml
{% endhighlight %}

permalink: /about/
title: About
title_icon: fa fa-user
body_color: None
description: About project & authors

Credits

This project has been developed by {{ site.author }} in the BBVA innovation-Labs department.

License

This project was released under license Apache 2

 _static/down.png

_static/comment-close.png

_static/down-pressed.png

_static/ajax-loader.gif

_static/comment.png

_static/plus.png

_static/file.png

_static/minus.png

_static/up.png

_static/up-pressed.png

nav.xhtml

 Table of Contents

 		Welcome to Read the Docs

_images/hacking-with-idsfree.png
Google Compute Engine Dlgltalocean ClOUd PrOVlder Platform

Auditor /
Penetration tester

Ethical

Hacking l

_static/comment-bright.png

